General Comprehensive Exam Spring 2012 Probability

Note: A table of distributions are given at the end. Sufficient justifications are required for full credit.

Name												
	_	_	_	_	$\overline{}$	_	_	_	 	 	 	

1. (10 points) Let a random sample $X_1,...,X_n$ follow a location-scale family distribution with probability density function (pdf) $\frac{1}{\sigma}g\left(\frac{x-\mu}{\sigma}\right)$ for some proper function $g\left(\cdot\right)$. μ is the location parameter, σ is the scale parameter. Another random sample $Z_1,...,Z_n$ are i.i.d. with pdf $g\left(z\right)$, and the sampling distribution of sample mean $\bar{Z}_n = \frac{1}{n}\sum_{i=1}^n Z_i$ has pdf $f\left(z\right)$. What is the pdf for $\bar{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$?

2. (15 points) Two players, A and B, alternatively and independently flip a coin and the first player to obtain a head wins. Suppose that P(head) = p and player A flips first. What is the probability that A wins?

- 3. Suppose the distribution of Y, conditional on X=x, is $N\left(x,x^2\right)$ and that the marginal distribution of X is uniform(0,1).
- (7 points) Calculate Var(Y).
- (8 points) Calculate Cov(X, Y).

4. (15 points) Let X have uniform distribution on (-1,2). Find the pdf of $Y=X^2$.

5. (15 points) Let $X_1, ..., X_n$ be a random sample from population distribution $N(\theta, \tau^2)$. The sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Show that \bar{X}_n converges in probability to θ .

6. (15 points) Suppose that X and Y have joint density function

$$f\left(x,y\right) = \left\{ \begin{array}{cc} x+y & \text{if } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{array} \right..$$

Find
$$P(X < 1/4|Y = 1/3)$$
.

7. (15 points) Let $X \sim Poisson(\lambda)$ and $Y \sim Poisson(\mu)$ and assume that X and Y are independent. What is the distribution of X + Y? Prove it.

Table of Distributions variance	e^{at}	$pe^t + (1-p)$	$(pe^t + (1-p))^n$	$\frac{pe^t}{1-(1-p)e^t} \ \left(t < -\log(1-p)\right)$	$e^{\lambda(e^{t}-1)}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$	$\exp\left\{\mu t + \frac{\alpha^2 t^2}{2}\right\}$	$\frac{1}{1-eta t}$ $(t<1/eta)$	$\left(rac{1}{1-eta t} ight)^{lpha}(t<1/eta)$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$	does not exist	$\left(\frac{1}{1-2t}\right)^{p/2} \ (t<1/2)$
	0	p(1-p)	np(1-p)	$\frac{1-p}{p^2}$		$\frac{(b-a)^2}{12}$	σ^2	β^2	$lphaeta^2$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\frac{\nu}{\nu-2} \text{ (if } \nu > 2)$	2p
	u legu	æ	du	1/p	~	$\frac{a+b}{2}$	7	В	αeta	$\frac{\varphi}{\varphi+\varphi}$	0 (if $\nu > 1$)	ęs _y ,
	PDF or probability function $I(x=a)$	$p^{x}(1-p)^{1-x}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$p(1-p)^{x-1}I(x \ge 1)$	$\frac{\sqrt{x}e^{-\lambda}}{x!}$	I(a < x < b)/(b - a)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	e = 18/19	$\frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\left(1+\frac{a^2}{\nu}\right)^{(\nu+1)/2}}.$	$\frac{1}{\Gamma(p/2)2^{p/2}}x^{(p/2)-1}e^{-x/2}$
	Distribution Point mass at a	$\mathrm{Bernoulli}(p)$	$\operatorname{Binomial}(n,p)$	$\mathrm{Geometric}(p)$	$Poisson(\lambda)$	$\operatorname{Uniform}(a,b)$	$Normal(\mu, \sigma^2)$	Exponential (β)	$\mathrm{Gamma}(\alpha,\beta)$	$\mathrm{Beta}(lpha,eta)$,	t_{ν}	χ^{22}_{pq}